شاخه‌های علم هوش مصنوعی‌

شاخه‌های علم هوش مصنوعی‌

در حال حاضر دانش مدرن هوش مصنوعی به دو دسته اصلی تقسیم می‌شود: یکی هوش مصنوعی سمبولیک یا نمادین (Symbolic AI) و دیگری هوش غیرسمبولیک که پیوندگرا (Connection AI) نیز نامیده می‌شود.

هوش مصنوعی سمبولیک از رهیافتی مبتنی بر محاسبات آماری پیروی می‌کند و اغلب تحت عنوان "یادگیری ماشین" یا (Machine Learning) طبقه‌بندی می‌شود. هوش سمبولیک می‌کوشد سیستم و قواعد آن را در قالب سمبول‌ها بیان کند و با نگاشت اطلا‌عات به سمبول‌ها و قوانین به حل مسئله بپردازد. در میان معروف‌ترین شاخه‌های هوش مصنوعی سمبولیک می‌توان به سیستم‌های خبره (Expert Systems) و شبکه‌های Bayesian اشاره کرد.

یک سیستم خبره می‌تواند حجم عظیمی از داده‌ها را پردازش نماید و بر اساس تکنیک‌های آماری، نتایج دقیقی را تهیه کند. شبکه‌های Bayesian یک تکنیک محاسباتی برای ایجاد ساختارهای اطلاعاتی و تهیه استنتاج‌های منطقی از روی اطلاعاتی است که به کمک روش‌های آمار و احتمال به دست‌ آمده‌اند. بنابراین در هوش سمبولیک، منظور از "یادگیری ماشین" استفاده از الگوریتم‌های تشخیص الگوها، تحلیل و طبقه‌بندی اطلاعات است.

این گرایش هوش مصنوعی ، بیشتر بر مدل سازی شناخت اعمال تأکید دارد و چندان خود را به قابلیت تعمق در بیولوژیک سیستم های ارائه شده مقید نمی کند.Case-Based Reasoning یکی از گرایش های فعال در این شاخه می باشد . به عنوان مثال روند استدلال توسط یک پزشک هنگام تشخیص یک بیماری کاملاً شبیه به CBR می باشد به این ترتیب که پزشک در ذهن خود تعداد بسیاری زیادی از شواهد بیماریهای شناخته شده را دارد و تنها باید مشاهدات خود را با نمونه های موجود در ذهن خویش تطبیق داده ، شبیه ترین نمونه را به عنوان بیماری بیابد . به این ترتیب مشخصات ، نیازمندی ها و توانائیهای CBR به عنوان یک چارچوب کلی پژوهش در هوش مصنوعی مورد توجه قرار گرفته است.

اما هوش پیوندگرا متکی بر یک منطق استقرایی است و از راه حل "آموزش/ بهبود سیستم از طریق تکرار" بهره‌ می‌گیرد. این آموزش‌ها نه بر اساس نتایج و تحلیل‌های دقیق آماری، بلکه مبتنی بر شیوه آزمون و خطا و <یادگیری از راه تجربه> است. در هوش مصنوعی پیوندگرا، قواعد از ابتدا در اختیار سیستم قرار نمی‌گیرد، بلکه سیستم از طریق تجربه، خودش قوانین را استخراج می‌کند. متدهای ایجاد شبکه‌های عصبی (Neural Networks) و نیز به‌کارگیری منطق فازی (Fuzzy Logic) در این دسته قرار می‌گیرند.

پیوندگرایی (Connectionism) هوشمندی را تنها حاصل کار موازی و هم‌زمان و در عین حال تعامل تعداد بسیار زیادی اجزای کاملاً ساده به هم مرتبط می‌داند.

شبکه‌های عصبی که از مدل شبکه عصبی ذهن انسان الهام گرفته‌اند امروزه دارای کاربردهای کاملاً علمی و گسترده تکنولوژیک شده‌اند و کاربرد آن در زمینه‌های متنوعی مانند سیستم‌های کنترلی، رباتیک، تشخیص متون، پردازش تصویر،… مورد بررسی قرار گرفته است.

علاوه بر این کار بر روی توسعه سیستم‌های هوشمند با الهام از طبیعت (هوشمندی‌های ـ غیر از هوشمندی انسان) اکنون از زمینه‌های کاملاً پرطرفدار در هوش مصنوعی است.

الگوریتم ژنیتک که با استفاده از ایده تکامل داروینی و انتخاب طبیعی پیشنهاد شده روش بسیار خوبی برای یافتن پاسخ به مسائل بهینه سازیست. به همین ترتیب روش‌های دیگری نیز مانند استراتژی‌های تکاملی نیز (Evolutionary Algorithms) در این زمینه پیشنهاد شده اند.

دراین زمینه هر گوشه‌ای از سازو کار طبیعت که پاسخ بهینه‌ای را برای مسائل یافته است مورد پژوهش قرار می‌گیرد. زمینه‌هایی چون سیستم امنیتی بدن انسان (Immun System) که در آن بیشمار الگوی ویروس‌های مهاجم به صورتی هوشمندانه ذخیره می‌شوند و یا روش پیدا کردن کوتاه‌ترین راه به منابع غذا توسط مورچگان (Ant Colony) همگی بیانگر گوشه‌هایی از هوشمندی بیولوژیک هستند.

برای درک بهتر تفاوت میان این دو شیوه به یک مثال توجه کنید. فرض کنید می‌خواهیم یک سیستم OCR بسازیم. سیستم OCR نرم‌افزاری است که پس از اسکن کردن یک تکه نوشته روی کاغذ می‌تواند متن روی آن را استخراج کند و به کاراکترهای متنی تبدیل نماید.

بدیهی است که چنین نرم‌افزاری به نوعی هوشمندی نیاز دارد. این هوشمندی را از دو طریق متفاوت می‌توان فراهم کرد. اگر از روش سمبولیک استفاده کنیم ، قاعدتاً باید الگوی هندسی تمام حروف و اعداد را در حالت‌های مختلف در بانک اطلاعاتی سیستم تعریف کنیم و سپس متن اسکن شده را با این الگوها مقایسه کنیم تا بتوانیم متن را استخراج نماییم. در اینجا الگوهای حرفی-‌عددی یا همان سمبول‌ها پایه و اساس هوشمندی سیستم را تشکیل می‌دهند.

روش دوم یا متد « پیوندگرا »این است که یک سیستم هوشمند غیرسمبولیک درست کنیم و متن‌های متعددی را یک به یک به آن بدهیم تا آرام آرام آموزش ببیند و سیستم را بهینه کند. در اینجا سیستم هوشمند می‌تواند مثلا‌ً یک شبکه عصبی یا مدل مخفی مارکوف باشد. در این شیوه سمبول‌ها پایه هوشمندی نیستند، بلکه فعالیت‌های سلسله اعصاب یک شبکه و چگونگی پیوند میان آن‌ها مبنای هوشمندی را تشکیل می‌دهند.

در طول دهه‌های 1960 و 1970 به دنبال ابداع اولین برنامه نرم‌افزاری موفق در گروه سیستم‌های مبتنی بر دانش(KnowledgeBased)  توسط جوئل موزس، سیستم‌های هوش سمبولیک به یک جریان مهم تبدیل شد. ایده و مدل شبکه‌های عصبی ابتدا در دهه 1940 توسط Warren McCulloch و Walter Pitts معرفی شد.

 سپس در دهه 1950 کارهای روزنبالت (Rosenblatt) درمورد شبکه‌های دولایه مورد توجه قرارگرفت. در 1974 الگوریتم Back Propagation توسط Paul Werbos معرفی شد، ولی متدولوژی شبکه‌های عصبی عمدتاً از دهه 1980 به این سو رشد زیادی پیدا کرد و مورد استقبال دانشمندان قرار گرفت. منطق فازی ابتدا توسط پروفسور لطفی زاده، در 1965 معرفی شد و از آن زمان به بعد توسط خود او و دیگر دانشمندان دنبال شد.

در دهه 1980 تلاش‌های دانشمندان ژاپنی برای کاربردی کردن منطق فازی به ترویج و معرفی منطق فازی کمک زیادی کرد. مثلاً طراحی و شبیه سازی سیستم کنترل فازی برای راه‌آهن Sendai توسط دو دانشمند به نام‌هایYasunobu و Miyamoto در 1985، نمایش کاربرد سیستم‌های کنترل فازی از طریق چند تراشه مبتنی بر منطق فازی در آزمون « پاندول معکوس » توسط Takeshi Yamakawa در همایش بین‌المللی پژوهشگران منطق فازی در توکیو در 1987 و نیز استفاده از سیستم‌های فازی در شبکه مونو ریل توکیو و نیز و معرفی سیستم ترمز ABS مبتنی بر کنترلرهای فازی توسط اتومبیل‌سازی هوندا در همین دهه تاثیر زیادی در توجه مجدد دانشمندان جهان به این حوزه از علم داشت.

البته هنگامی که از گرایش‌های آینده سخن می‌گوییم، هرگز نباید از گرایش‌های ترکیبی غفلت کنیم. گرایش‌هایی که خود را به حرکت در چارچوب شناختی یا بیولوژیک یا منطقی محدود نکرده و به ترکیبی از آنها می‌اندیشند. شاید بتوان پیش‌بینی کرد که چنین گرایش‌هایی فرا ساختارهای (MetaStructure) روانی را براساس عناصر ساده بیولوژیک بنا خواهند کرد.