آشنایی با ساختار یک سیستم خبره هوش مصنوعی

آشنایی با ساختار یک سیستم خبره هوش مصنوعی

هر سیستم خبره از دو بخش مجزا ساخته شده است: پایگاه دانش و موتور تصمیم‌گیری.
پایگاه دانش یک سیستم خبره از هر دو نوع دانش مبتنی بر حقایق ‌(Factual) و نیز دانش غیرقطعی (Heuristic)  استفاده می‌کند.  Factual Knowledge، دانش حقیقی یا قطعی نوعی از دانش است که می‌توان آن را در حیطه‌های مختلف به اشتراک گذاشت و تعمیم داد؛ چراکه درستی آن قطعی است.

در سوی دیگر،  Heuristic knowledge  قرار دارد که غیرقطعی‌تر و بیشتر مبتنی بر برداشت‌های شخصی است. هرچه حدس‌ها یا دانش هیورستیک یک سیستم خبره بهتر باشد، سطح خبرگی آن بیشتر خواهد بود و در شرایط ویژه، تصمیمات بهتری اتخاذ خواهد کرد.

 دانش مبتنی بر ساختار Heuristic در سیستم‌های خبره اهمیت زیادی دارد این نوع دانش می‌تواند به تسریع فرآیند حل یک مسئله کمک کند .

البته یک مشکل عمده در ارتباط با به کارگیری دانشHeuristic آن است که نمی‌توان در حل همه مسائل از این نوع دانش استفاده کرد. به عنوان نمونه، نمودار  به خوبی نشان می‌دهد که جلوگیری از حمل سموم خطرناک از طریق خطوط هوایی با استفاده از روش Heuristic امکانپذیر نیست.

دفتر ماهنامه شبکه در تهران قرار دارد.
اطلاعات بخش آشنایی با ساختار یک سیستم خبره هوش مصنوعی از سیستم خبره از طریق مصاحبه با افراد متخصص در این زمینه تامین می‌شود. مهندس دانش یا مصاحبه‌کننده، پس از سازمان‌دهی اطلاعات جمع‌آوری‌شده از متخصصان یا مصاحبه شوندگان، آ‌ن‌ها را به قوانین قابل فهم برای کامپیوتر به صورت (IfThen) موسوم به قوانین ساخت (Production Rules) تبدیل می‌کند.

موتور تصمیم‌گیری سیستم خبره را قادر می‌کند با استفاده از قوانین پایگاه دانش، پروسه تصمیم‌گیری را انجام دهد. برای نمونه، اگر پایگاه دانش قوانینی به صورت  زیر داشته باشد:

تهران در ایران قرار دارد.

سیستم خبره می‌تواند به قانون زیر برسد:

دفتر ماهنامه شبکه در ایران قرار دارد.