آموزش Unsupervised یا تطبیقی (Adaptive)

آموزش Unsupervised  یا تطبیقی (Adaptive)

در ادامه آموزش های گروه متلب پروژه سراغ Unsupervised می ریم که  شبکه‌ عصبی بدون در اختیار داشتن داده‌های خروجی، در معرض آموزش قرار می‌گیرد. در واقع سیستم به تنهایی و بدون کمک خارجی باید با توجه به شکل سیگنال‌های خروجی خود، درباره درستی و نادرستی آنها تصمیم‌گیری نماید. در دنیای واقعی شرایط بسیار زیادی وجود دارند که در آنها مجموعه اطلاعات کافی برای آموزش دادن به سیستم فراهم نیستند. تحقیقات نظامی یکی از گرایش‌هایی است که به این موضوع توجه دقیقی دارد. به عنوان مثال گفته می‌شود که شرایط جنگی به دلیل فراوانی پارامترها و تکنیک‌های نظامی متغیر و پیشرفت‌های تکنولوژی نظامی، از نمونه مواردی است که در آنها به هیچ وجه نمی‌توان مجموعه داده‌های آموزشی کافی به دست آورد.در این زمینه یکی از محققان شبکه‌های عصبی، به نام Tuevo Kohonen (از دانشگاه هلسینکی) فعالیتی جدی دارد. کوهنن با تحقیقات در ساختارهای عصبی غیرمتعارف، به پژوهش در این زمینه ادامه می‌دهد. کوهنن، نرون‌های شبکه‌عصبی را فیلدهای مختلفی تقسیم‌بندی می‌کند. در روش کوهنن، نرون‌های هر فیلد "مرتب توپولوژیک" یا Topologically Ordered محسوب می‌شوند (توپولوژی نام شاخه‌ای از ریاضیات است که در آن نگاشت از یک فضا به فضای دیگر بدون تغییر مشخصه‌های هندسی، مورد بررسی قرار می‌گیرد). گروه‌بندی‌های سه‌بعدی که در ساختار مغز پستانداران یافت شده است، نمونه‌ای از مرتب‌سازی توپولوژیک محسوب می‌شوند. کوهنن معتقد است که فقدان ملاحظات توپولوژیک در مدل‌های عصبی امروزی، باعث می‌شود که شبکه‌های عصبی امروزی، مدل‌های ساده شده‌ای از شبکه‌های عصبی واقعی موجود در مغز محسوب شوند. در هر صورت این حوزه از مبحث شبکه‌های عصبی در انجام پروژه متلب هنوز در مرحله تحقیقات آزمایشگاهی قرارداد و کاربرد واقعی نیافته است.